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CHAPTER 0. BACKGROUND 

0.1. Introduction. In 1926, Kneser published a paper [39] that received 
little notice until the 1950's. In this paper he proved, using conformai 
mapping theory, that the space 0(E2) of rotations of the plane is a strong 
deformation retract of the space Top(E2) of all orientation preserving 
homeomorphisms of the plane onto itself, the topology for this space 
being the compact-open topology. Thus, the injection i:0(E2)->Top(E2) 
induces isomorphisms of the homotopy groups so that, as a consequence, 
the group of an E2 bundle reduces to the orthogonal group. 

In the 1950's, I tried to find conditions under which an open map 
f:X-+I9 Xcompact metric, 7= [0, 1], each/-1(r) a 2-disc D2, would be like 
the projection map of D2 x I onto /. It turned out (Dyer-Hamstrom [19]) 
that the fact that the space of homeomorphisms of D2 onto itself is locally 
contractible enabled us to apply a selection theorem of Michael to prove 
tha t / i s like a projection map if it has certain regularity properties similar 
to equicontinuity (see § 0.3) and that if ƒ is replaced by a finite dimensional 
separable metric space,/is like the projection map of a disc bundle. Thus, 
in addition to their intrinsic interest, solutions to problems concerning the 
homotopy groups of the space of all homeomorphisms on a manifold have 
important consequences in the study of fibre bundles and open mappings. 

It is my purpose here to survey the state of the knowledge of homotopy 
properties of homeomorphism spaces and, since they are clearly related, 
the analogous properties of certain embedding spaces. (The reader is 
warned that space restrictions prevent my considering codimensions other 
than 1.) The remainder of this chapter is devoted to definitions and Michael's 
theorem. In Chapter I, I consider the topological category, in Chapter II, 
the PL category, and in Chapter III, PL approximations and the relation
ship between these categories. 
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I wish, at this point, to express my appreciation to Robert D. Edwards 
for a long and helpful letter and to Paul T. Bateman, my department head, 
for general encouragement and some relief from classroom duties during 
the preparation of this manuscript. 

0.2. The setting; definitions and conventions. All manifolds, unless it 
is specifically stated otherwise, are to be compact, with or without bound
ary. Let M be a manifold and let f:M->N be an embedding of M in an 
«-manifold N. I write/: M^N and call this embedding proper iff"'1 (dN) = 
dM, where 9 denotes boundary. I consider such embeddings only for the case 
d i m M = « — 1 and hereafter frequently assume, without specific mention 
of the fact, that this is the case. The proper embedding/: M<+N is locally 
flat at ƒ (x), x G int M (the interior of M), if there is a homeomorphism h 
oîEn onto a neighborhood of/(JC) in N such that h(0)=f(x) and h(En-1) 
is a neighborhood of / (x) in f(M) (where £n~1 denotes the hyperplane 
xn=0). A suitable modification of this definition is made for xedM. 
Then ƒ is locally flat if it is locally flat at each point ƒ (x). 

Let Top(N) denote the identity component of the space of all homeo-
morphisms of a compact «-manifold N onto itself. If ƒ is such a homeo
morphism, I write/:iV±>. The symbol 1^ denotes the identity homeomor
phism. When no confusion exists, the subscript N will be dropped. This 
space is provided with the sup norm metric—i.e., if/, g e Top(N), d(f, g)= 
sup{d(/(x), g(x))\x e N}. If M is a manifold properly and locally flatly 
embedded in TV, let ê(M, N) denote the space of locally flat proper 
embeddings of M in N that separate N, also provided with the sup norm 
metric. If A c= N, let Top(N; A) denote the subspace of Top(N) consisting 
of those homeomorphisms that leave A pointwise fixed. In what follows, 
A will usually be either dN or a properly and locally flatly embedded mani
fold. Similarly, ifA<^M,a properly and locally flatly embedded manifold, 
let <f (M, N; A) denote the subspace ê{M, N) consisting of those homeo
morphisms that leave A pointwise fixed. If it makes sense, let 0(N) denote 
the space of orientation preserving rigid motions of N* It is important to 
note that all of these spaces are topologically complete. Since Top(N) is a 
group (under the operation of composition) that acts freely and transitively 
on N9 its homotopy properties are of special interest in fibre bundle theory. 

If A" is a metric space, let B(x9 s) denote the open ball with center x 
and radius e and, if A^X, N(A9 e) the e-neighborhood of A. The space X 
is k-connected for a nonnegative integer k if 77^(lr)=0 for j^k and locally 
k-connected (LCfc) if for each x G Zand £>0, there exists a ô>0 such that 
every map/ : Sj-+B(x, d) (j^k) is homotopic to 0 in B(x, e). The space Xis 
locally contractible if for each x e X and £>0, there is a (5>0 such that 
B(x, ô) is contractible in B(x, s). 
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It is important to note here that since Top(N) is a group whose operation 
is composition of homeomorphisms, if it is LCfc or locally contractible at 
1N, it is so at every element. Also, the easily proved fact that d(f,g)= 
d(fh, gh) implies that for Top(N), the ô in the definition of LC& and local 
contractibility depends only on s—i.e., Top(N) is LCfc if and only if for 
each e there is a ô such that if ƒ e Top(N), every map of Sj (j^k) into 
B(f, ô) is homotopic to 0 in B(f, s) and if we exhibit such a ô for 1^ it 
works for every/. 

In En, Dn denotes the closed unit ball centered at the origin, 0, and 
S"-1 denotes its boundary. The ball D"-1 is identified with DnC\En~1. As 
usual, ƒ denotes the interval [0, 1]. 

Two homeomorphisms/, g\M^N are isotopic if there is a homeomor-
ph i smF:Mx 7c;7Vx / such that F(x, 0 )=( / (x ) , 0), F(x, l) = (g(x), 1) and 
F commutes with projection on the second factor—i.e., F(x,t)eNxt. 
(Such an Fis called level preserving with respect to I.) If amoves no point 
by as much as e, ƒ and g are e-isotopic. The homeomorphism F defines a 
path {Ft\t el} in ê(M, N)—Ft(x)=7rF(x, t), where TT is the projection on 
the first factor. I sometimes use the notation {Ft} to name the isotopy. If F 
extends to G: Nxl±>, then ƒ and g are called ambient isotopic. 

If g is fixed and F depends continuously on/ , Fis called canonical. Thus, 
when we say, for ƒ in <f (Af, N), that ƒ is canonically isotopic to 1 M , we are, 
in effect, saying that ê{M, N) is contractible. If we say that for each e>0, 
there is a <5>0 such that each ƒ in N(lM, ô) is canonically isotopic to lM 

in N(lM, e), we are saying that S{M, N) is locally contractible at lM. 
If for each ƒ G <f(M, TV) and £>0, there exists a ô>0 such that if 

ge£(M,N) and d(f,g)<ô, then there is a G e Top(N) such that 
d(G, lN)<e and Gf\M=g, then S{M,N) has the complete regularity 
property. If, for each/, G depends continuously ong, then <f (M, N) has the 
local canonical extension property. More precisely, if Zis a metric space and 
for each ƒ G <f(M, N) and s > 0 , there is a <5>0 such that if <p:Z^N(f, ô) 
maps Z continuously into the ^-neighborhood off in S{M, N), then there 
is a map O i Z - ^ l ^ , e) such that 0(z)/|M=<p(z), then *?(M, N) ffas the 
/oca/ canonical extension property with respect to Z. If for each (p\Z-+ 
<f (M, N) there is a map <3):Z-+Top(N) such that <D(z) extends <p(z), then 
<f (M, JV) has the canonical extension property with respect to Z. If O(z) is 
defined only over a component Q of TV— M, <f (M, JV) has the canonical 
extension property over Q with respect to Z. 

Let <^0(^> A0 denote the subspace of &{M, N) consisting of those em-
beddings that are restrictions to M of elements of Top(N). If/: Top(N; M) c; 
Top(N) is the injection and r : Top{N)->êQ(M, N)is induced by restriction— 
i.e., r(A)=A|M, then Top(N; M)^Top{N)-^SQ{M, N) is a (Serre) fibration 
if é'0(M, N) has the canonical extension property with respect to Dk for 
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each k. This is the usual covering homotopy property. Note that if r(/z) = 
ƒ, r^if) is homeomorphic to Top(N; M). If this is a fibration, then the 
homotopy exact sequence can be used to obtain information about the 
homotopy properties of these spaces. 

0.3. A selection theorem of Michael. The following is a weakened 
version of Michael's theorem that is useful for my purposes. 

THEOREM [44]. If X is a topologically complete metric space, Y is 
metrizable and has covering dimension at most n+l, andf: X—> Y is an open, 
homotopy n-regular {see below) surjection, then for each closed Z c Y and 
map g:Z-+X such thatfg=\z, there is an open U in Y such that Z^-U and 
an extension G : U-^Xofg such thatfG= 1 JJ. If the point inverses under f have 
vanishing homotopy groups in dimensions at most n, then U may be taken to 
be Y. {The maps g and G are cross sections.) 

The map / : X-> Y is homotopy n-regular if it is open and, for each y e Y, 
x ef-1{y) and e>0 , there is a ô>0 such that any map of Sk

9 k^n, into 
B{x, <5)n/-1(j ,)) ƒ e T, is homotopic to 0 in B{x, €)nf-1{/). Note that 
this implies that each f~~Hy) is LCW. 

I now describe the setting in which this theorem is used. There is a map 
f\X->Y, X and Y as described above, and a compact space K such that 
for each y, there is a homeomorphism fy of K onto ƒ ^(y). The map ƒ is 
required to be completely regular—i.e., for each y and e>0 , there is a 
<5>0 such that if y ' e 7 and d{y\ y)<ô, then there is an e-homeomorphism 
off"1{y) onto /'""H/)- From the map ƒ there is obtained a m a p / *:X*-+Y 
where, for each y, f*^{y) is the space (homeomorphic to Top{K)) of all 
homeomorphisms of K onto / ^ ( y ) . Suppose it is known that Top{K) is 
LCW. The complete regularity makes it easy to prove that for (X*9f*9 Y), 
the hypotheses of Michael's theorem are satisfied so that for each y, 
there is a neighborhood U of y and a map GJJ : £/->X* such tha t / *GU = 1 u. 
Thus there is a homeomorphismgu'.UxK-^f~'1{U) defined by gjj{z, x)= 
GJJ{Z){X). Note that if Top{K) is «-connected, then U ftiay be taken to be 
all of Y. Note further that if L c AT and g: YxL->X is a homeomorphism 
such that 7Tg~*\g{YxL)=f\g{YxL), then if Top{K; L) is LCn and for 
each y, the homeomorphism in the definition of complete regularity can 
be chosen to take g{y, x) onto g{y', x) for each x in L, then U and Gv can 
be chosen so that gv extends g\UxL. 

Complete regularity turns up naturally. If K is a manifold of dimension 
n^3, then (modulo the Poincaré conjecture) a homotopy «-regular map is 
completely regular ([21] and [22]). In this case, the homotopy 0-regular 
maps are the regular maps studied by White, Whitney, Whyburn and 
others ([58], [59], and [60]). 
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We see, then, that the homotopy properties of Top(N) can give infor
mation about when maps whose point inverses are all copies of N are like 
projection maps of products and it will be seen that this, in turn, can be 
used to get information about canonical extension properties. (See §1.3, 
[22] and [27] for further details.) 

CHAPTER I. THE CATEGORY TOP 

1.1. Some elementary examples; the Alexander trick. 
1.1.1. The unit interval. 

THEOREM 1.1.1. Top(I) is homeomorphic to Top(I; 37) and is contractible 
and locally contractible. 

PROOF. Let h be an orientation preserving homeomorphism of I onto 
itself and, for each x el and tel, let ht(x)=th(x) + (l— t)x. It is clear 
that {ht} is an isotopy from h to 17 and that it is canonical. Also, d(h, l)<ô 
implies that d(hu 1)<<5, so that Top(I) is contractible and locally con
tractible. 

1.1.2. The unit circle. Coordinatize S1 by the reals mod 1. Obviously, 
Top(S1\p) is homeomorphic to Top(I) for any point/? of S1. Therefore, if 
h e Top{S1), there is an isotopy in TopiS1; h(\)) from h to a rotation. This 
isotopy is clearly canonical, so that we have 

THEOREM 1.1.2. The space 0(Sl) is a strong deformation retract of 
TopiS1). Since O^S1) is homeomorphic to S1, it follows that 7T1(Top(S1))=Z 
and TTiiTopiS^^Ofor i>\. 

1.1.3. The unit ball; the Alexander trick. Consider first Top(Dn ; S11-1 UO). 
If h is in this space, let h* denote h extended by the identity to all of En. 
For each tel, and x e Dn, let ht(x)=th*(x/t). Then {ht} is a canonical 
isotopy in Top(Dn; S ^ u O ) from h to 1. If d(fg)<e, then d(ft, gt)<e. 
Therefore 

THEOREM 1.1.3.1. Top(Dn; Sn~1^J0) is contractible and locally con
tractible (Alexander [3]). 

This technique is the by now celebrated Alexander trick and is a very 
useful tool. 

Observe that if h e Top(Dn; S*1-1) and moves the origin, h can be canon-
ically isotoped in Top(Dn; S*1"1) to an element of Top(Dn; Sn-1UO) so 
that 

THEOREM 1.1.3.2. Top(Dn; S"-1) is contractible and locally contractible 



212 MARY-ELIZABETH HAMSTROM [March 

A radial homeomorphism of Dn is a homeomorphism that takes each 
radius linearly onto a radius. Denote by TopR(Dn) the subspace of 
Top(Dn) consisting of all radial homeomorphisms. The argument above 
proves 

THEOREM 1.1.3.3. TopR(Dn) is a strong deformation retract of Top(Dn). 
Since TopR(Dn) is homeomorphic to TopiS*1*1), it follows that ifOiS^1) is a 
strong deformation retract of Top (S71*1), then 0(Dn) is a strong deformation 
retract of Top(Dn). 

Also, since each element of Top{Sn~1) extends uniquely via a radial 
homeomorphism to an element of Top(Dn), it is not hard to prove 

THEOREM 1.1.3.4. Top(Dn; Sn~1)c;Top(Dn)-+Top(Sn-1) is a fibration 
[40]. 

1.2. The unit 2-sphere—an example of a technique. Since what goes on 
here is fairly easily visualized and the technique can be used in a much 
more general setting, I shall pay particular attention to this example. 

It will be clear that whatever is done to Top(S2;p) will be canonical (p 
an arbitrary point of S2). By canonically moving h to a homeomorphism 
leaving the antipode, q, of p fixed, we can restrict our attention to 
Top(S2;p\Jq). 

Let S1 be the great circle half way between p and q and D the disc in S2 

bounded by S1 and containing p. For each he Top(S2;pUq), let rh= 
sup{r|3 circle with center p and radius r in h(D)C\D). The number rh 

depends continuously on h [38] and the circle Sh with center/? and radius 
rh/2 lies in the interior of h(D)nD. If we canonically isotope A to a 
homeomorphism for which rh\2 is, say, 1, we may assume for homotopy 
purposes that the circle S\ centered at/? of radius 1 bounds a disc D0 lying 
in the interior of D and of each h(D). We have seen that the set of h for 
which this is true is a strong deformation retract of Top(S2;pUq). 

Let A denote the annulus bounded by Si US1 and Ah that bounded by Si 
and h(Sx). Several possibilities may occur. 

Case 1. ^(S1, S2—D0) has the canonical extension property over A. 
Case 2. ^(S\ S2—D0) has the canonical extension property of A with 

respect to Sk for each k. 
Case 3. ^{S1, S2—D0) has the local canonical extension property over 

A. 
Case 4. ^(S1, S2—D0) has the local canonical extension property over 

A with respect to Sk for each k. 
If any of these cases occurs, then there may be applied what I call the 

Roberts trick, since it was communicated to me by J. H. Roberts and is 
what he had in mind in [50]. Let Fh denote the canonical extension of 
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h\Sx (guaranteed by one of the four cases listed above) to a homeomor-
phism of A onto Ah. Then Fh extends through h (to S2—D) and the 
radial extension (to D0) to a homeomorphism Fh:S

2<3. The homeomor-
phism FhXh is 1 on S1 so, by the Alexander trick, it is canonically isotopic 
to 1, leaving the points of S1 fixed. Similarly, since Fh takes S£ onto itself, 
it is canonically isotopic to a radial extension of Fh\Sl. Thus h^F^F^h) 
is canonically isotopic to the radial extension of Fh\S] which, in turn (see 
§1.1.3), is canonically isotopic to a rotation. 

Depending on which of the four cases (if any) is true, one of the follow
ing conclusions holds. I point out that all of the cases are true, so that the 
following are, in fact, theorems. 

Case 1. 

THEOREM 1.2.1. OiS1) is a strong deformation retract ofTop(S2;pUq). 

Since what we have done is canonical with respect to/?, we have 

THEOREM 1.2.2. 0(S2) is a strong deformation retract ofTop(S2). 

THEOREM 1.2.3. 0(E2) is a strong deformation retract of Top(E2) 
(compact-open topology). 

This last result is of particular interest since Browder [6] has shown that 
for some n, 0(En) and Top(En) are not homotopically equivalent. Thus 
En bundles do not always contain Dn bundles. (The n is not exhibited.) 

Case 2. 

THEOREM 1.2.4. Top(S2;pUq) is weakly homotopically equivalent to 
OOS1)—i.e.9 the injection from the space of rotations leaving pUq fixed into 
Top(S2;pUq) induces isomorphisms of homotopy groups. 

THEOREM 1.2.5. 0(S2) and Top(S2) are weakly homotopically equivalent. 
Roughly, iff: Sk->Top(S2), then ƒ(x) is canonically isotopic to a rotation and 
iff(x) is already a rotation, the isotopy leaves it fixed. 

Since 0(S2) is homeomorphic to P3 , real projective 3-space, &3 is a 
covering space of Pz, and we have the Hopf fibration S1c+S3-+S2, the 
homotopy groups of Top(S2) are known modulo those of S2 and Sz. 

THEOREM 1.2.6. 7r1(rö/?(5,2))=7r1(P
3)=Z2, nr2(Top(S2))=0 and 

TTk(T0P(S2)) = TT.OS3) = 77,05*) 

for k>2. 

Case 3. In the performance of the Roberts trick, if both h and Fh are 
near the identity, then all the maps in the isotopy from h to a rotation are 
near the identity. 
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THEOREM 1.2.7. Top(S2) is locally contractible. 

Case 4. The comments for Case 3 apply here also. 

THEOREM 1.2.8. Top(S2) is LCkfor all k. 

This example illustrates a close relationship between the homotopy 
properties and the canonical extension properties. It is from this point of 
view that I have studied these problems. It was essentially from this point 
of view that Kneser (as I mentioned in §0.1) proved these theorems for S2. 
Although his proof is not exactly like that outlined above, the essential 
ideas are the same. He used the continuity property of conformai mappings 
on the annulus (see [41] or [57]) to obtain the necessary canonical ex
tension properties of Cases 1 and 2 above. 

1.3. Top(A) and canonical extensions over A. Without conformai 
mapping theorems, which are certainly not topological, we can still obtain 

THEOREM 1.3.1. $(Sl, S2—D0) has the canonical extension property 
over A with respect to Sk, so that Case 3 of §1.2 holds. 

INDICATION OF PROOF. Consider ƒ :Sk-^S>(S1, S2—D0). Let Ax be the 
annulus bounded by *Sj and ƒ (x)(S1). There is a level preserving (with 
respect to Sk) embedding ƒ * : dA xSk^S2xSk defined by ƒ * ( ƒ , * ) = 
(ƒ (x)(y), x) if y e S1 and/*(v, x)=(y, x) if y e Sj. What is needed is a level 
preserving embedding F*:AxSkc>S2xSk that extends ƒ ^ x S * and 
takes S] X Sk onto itself. Then for each x, Fx is the canonical extension we 
want. 

The embedding F* is obtained by means of Michael's selection theorem 
(§0.3). Look at X={J (Axx{x})czS2xSk and p:X->Sk, the projection 
onto the second factor. That p is completely regular, so that for y near x, 
there is a small homeomorphism from Ax to Ay extending ƒ (y)f (x)"1 

follows from basic theorems in plane topology. It will be seen that 
Top(A ; S1) is LCfe for each k and homotopically trivial. It has already been 
observed that it is topologically complete. Michael's theorem applied to 
the map p* : _ -+Sk such that for each x, p*-1^) is the space of all homeo-
morphisms of A onto Axx{x} taking ƒ G S1 onto (ƒ (x)(y), x), then yields, 
as explained in §0.3, the required homeomorphism F*. Thus, the problem 
of computing the global homotopy groups of Top(S2) is reduced to that 
for the global and local homotopy groups of Top (A). 

THEOREM 1.3.2. <f (S1, S2—D0) has the local canonical extension property 
over A with respect to Sk, so that Case 4 of §1.2 holds. 

PROOF. Things are done a little differently here but still depend strongly 
on the fact that Top(A ; S1 U5j) is LC/C for each k. Recall that, as explained 
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in §0.2, this means that for each e there is a ô such that i f / i s any map of 
Sk into B(\, ô), f is homotopic to 0 in B(l, e). What is needed (the notation 
as above) is an embedding F* : A x S*->S2 X S* that extends i U/*| (55 US1) x 
Sk (/ is the injection) and moves no point as much as e if/* moves no point 
as much as ô. What follows outlines an argument whose details (for 
dimension 3) are given in [22]. For k= 1, we obtain F* by first applying the 
local version of Michael's theorem to the map/?* :_-^S1 for which/?*"1(x) 
is the space of homeomorphisms of A onto Ax x {x} taking y to (y, x) if 
j e S] and to (ƒ (x)00> x) if y E S1. From Michael's theorem, we get a 
sequence Ö 0 < Ö 1 < - • -<an=:a0 of points of S1 and for each /, a level 
preserving homeomorphism Ff. Ax [ai9 öi+1]->/?"~1[öi, tfi+1] extending / U/* 
and moving no point very far. The product structure and the local con
nectivity of Top(A; SP-KJSl) is used to fit these homeomorphisms together 
to get F*. Let F^.A^S2 be defined by F</y)=**•<(>, ( l - * K + t a î + 1 ) , 
where rr is projection on the first factor and f=(l— t)ai+tai+1. Then 
F^.Fi^a.'.AtD is an element of Top(A; S1uSl) near 1 so is isotopic to 1 
via an isotopy {Ht} every element of which is near 1 ( # 0 = ^ \ a / * - i a. a n d 
HX=\A). Define Ff.Ax [ai9 ai+1]->S*X [ai9 ai+1] by FÙ{y)=FuHt(y), 
where the f stands for (1 — t)ai+tai+1. It is easy to check that these homeo
morphisms agree on the a{ and do not move any point very far. I let the 
reader fill in the e's and <5's. 

If fc>l, note first that if Top(N) is LC*-1, then the space of level pre
serving (with respect to S*"1) homeomorphisms of NxS1*-1 is LC° (see 
[22]). Use induction, assuming that the local extensions exist with respect 
to S^1. Consider Sk as S*-1 X /with S*-1 x 0 and Sk-X X1 reduced to points. 
Let p:X-+I take Axx{x} onto the /-coordinate of x. Except for t=0 or 
t= 1, p~l{t) is homeomorphic to A x S*""1. Michael's theorem may now be 
applied to /?* : _->/, where/?*~1(r) is the space of level preserving homeo
morphisms of A x S^1 onto /?~1(0> with suitable restrictions to dA x S70"1. 
For some sequence 0=a0<- - -<an=l, we get Fi:AxSk~1x [ai9 a^c; 
/?-1[ûi, tfH1]. We can fit these together as indicated above to obtain F*. 

What we need, then, is information about the homotopy properties of 
Top{A). 

THEOREM 1.3.3. Top(A ; dA) is LCkfor each k. 

PROOF. An argument similar to the one above can be used. Consider A 
as Sxxl and for some two points a and b of S1, let Ia={a}xl and Ib= 
{b}xl. Suppose that f:Sk-+Top(A; dA) is such that no f(x)(Ib) meets Ia 

(la and Ib will play the roles of S1 and S] above). Let D0 and D± be the 
discs into which / a U/ b decomposes A. Since, by the Alexander trick, 
Top{Di\ 3/)4) is LCfc for each k, an argument similar to that outlined 
above for S,{S1, S2—D0) gives the local extension property for 
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é>(Ih,A—Ia\ dA) with respect to Sk. (Conformai mapping theory would 
permit us to drop the "with respect to S*".) Thus, for x e Sk, there is a 
canonical homeomorphism Fxs Top (A; dA) such that Fx\la=lIa and 
Fx\lh=f(x)\lb. The Roberts trick gives the required homotopy from ƒ to 0. 
(Note that Top(D2; dD2) is homeomorphic to Top(A; dAuQ.) 

THEOREM 1.3.4. Top(A; dA) is homotopically trivial. 

The proof of this theorem requires more work, but the proof uses 
Michael's theorem and is essentially elementary. The details are much like 
those used in the computation of -n-^TopiT2)) [24]. 

1.4. How to apply these techniques to a general situation. The argu
ments used in §§1.2 and 1.3 have general application. Suppose that the 
properly, locally flatly embedded (n—l)-manifold M separates N, that 
S{M, N) has the complete regularity property and that Top(N; M) is 
LCfc for each k. The argument used for S(SX, S2-D0) proves that S{M, N) 
has the local canonical extension property with respect to Sk for each k. 
The same argument works to prove that S{M, N) has the canonical 
extension property with respect to Dk for each k. Prove it first for k=l, 
then, as above, use induction by considering Dk as £>k-1xl. Here we do 
not have to worry about e's and ó's. Thus, as explained in §0.2, Top(N;M)c> 
Top(N)-+<l?0(M9 N) is a fibration. If Top(N; M) is homotopically trivial, 
then <f (M, N) has the canonical extension property with respect to Sk. 

The reader who examines the induction argument will see first that if it 
is known that S{M9 N) has the local canonical extension property with 
respect to Sk, then if the Roberts trick is applicable, it can be proved that 
Top(N) is LCk and second, that if it is known that Top{N\ M) is LCfc, then 
the induction argument proves that <f (M, N) has the local canonical 
extension property with respect to *S*+1. For the case Top(S2), the applica
bility of the Roberts trick depended on Top(A) and this, in turn, depended 
on Top{D2). So here, the applicability of the Roberts trick depends on 
Top(MxI; d(MxI)) and this, in turn, will depend on Top (some other, 
hopefully less complicated manifold) et cetera. 

1.5. Top{M2). 

THEOREM 1.5.1. If M is a compact 2-manifold, Top{M) is LCkfor each k. 

PROOF. Use the standard handlebody decomposition. This consists of 
disjoint discs Bl9 • • • , Bn, disjoint discs Cl9 • • • , Cm such that for each 
i,j, BiHCj is an arc or empty and Ci meets exactly two 2?/s and disjoint 
discs El9 - • • , Ev such that each Ek meets each Bt and Ci in an arc or not 
at all and meets exactly three JB/S and three C/s. These discs are obtained 
from a triangulation T of M by taking the stars of the barycenters of the 
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simplices of Tin the second barycentric subdivision of T. Thus, the B9s are 
the stars of the vertices, the C's the stars of the barycenters of the edges, the 
E's the stars of the barycenters of the faces. 

Consider Bx and a disc B[ such that Bi^'mtB'i and B[nB~0, f ^ l . 
For f:Sk-+Top(M), the image sufficiently near 1, h=f(x), we have 
h^iBi)^ int B[. There is a canonical (with respect to Sk) homeomorphism 
Fh G Top(M), also near 1, such that F^^fr1^ and i^|M-i?;==l. Use 
the Alexander trick to get a canonical small isotopy from Fh to 1. Then 
hFh, which is 1 on Bl9 canonically isotopes to h via a small isotopy. Do this 
for all Bi so that h canonically isotopes, via a small isotopy, to hl9 which 
leaves each B{ pointwise fixed. The argument may be repeated for, say, 
Cv Suppose that Q nB{ and Q nBj are arcs. Choose a disc C[ containing 
Ci such that C[nCk=0, &7*1, C1nBi and C1nBi are arcs with C1CiBi 

and CiHBj in their interiors, C{ meets no other i?'s and C i O C ^ 
( Q n i ^ u ^ C i n i ^ ) . Then h± can be canonically isotoped, via a small 
isotopy, to h2, which is 1 on each B and each C. Finally, the Alexander 
trick may be applied to each Ek so that h is canonically (with respect to 
Sk) isotopic, via a small isotopy, to 1. The reader can easily supply the e's 
and d's. This argument is like Kister's argument in [37] and indicates that 
for 2-manifolds, we need only prove the local canonical extension prop
erties and the LCfc property for certain simple situations and that a 
general argument can then be used to prove that Top{M) is LCfc. 

The global results require more work but the homotopy groups of 
Top(M2) have all been computed with the help of Michael's theorem. 

THEOREM 1.5.2. If M2 has nonempty boundary or has genus greater than 
1 if orientable or greater than 2 if nonorientable, then Top(M2; dM2) is 
homotopically trivial. For projective space, P2, rri(Top(P2))=7Ti(P

2) for 
i > 2 , TT2(Top(P2))=0 and 771(Jb/?(P2))=Z2. For the Klein bottle, K, 
iri(Top(K))=09 i > l , and 7Ti(Top(K))=Z. Also, ^(TopiT2))^^2) for 
each i. (See [24], [25], and [26].) 

For x G M2, it is also useful to know about Top(M2; x). Quintas and 
McCarty ([43] and [48]) discuss this. See Quintas [49] for a general 
discussion of Top(M2). 

1.6. 3-manifolds. Suppose that dimAf=2 and dim7V=3. That 
S{M, N) has the complete regularity property was proved in [22]. The 
^proof depends, of course, on work of Bing and Moise ([4], [5], and [45]). 

THEOREM 1.6.1. IfN is a compact 3-manifold, Top(N) is LCkfor each k. 

We can proceed exactly as in §1.5, paying attention to the comments in 
§1.4. The standard handlebody decomposition, obtained in the same way 
as that for M2 from a triangulation T of TV, consists of four families 
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{Bij-.j^l, • • • , n{}9 / = 0 , 1, 2, 3, of disjoint (tame) balls, each Bu the star 
in the second barycentric subdivision of the barycenter of an /-simplex of 
T. Each By meets exactly two i?0/s and these in discs; each B2j meets 
three B0/s and three 2?i/s, each intersection a disc, the intersection with 
the union an annulus; each BZj meets four B0/s9 six 2^/s and four B2/s9 

each intersection a disc, the intersection with the union a 2-sphere. 
Suppose that f:Sk~>Top(N) has image near 1. Consider first the B0/s. 

By taking a suitable ball B'0j9 B0j<^int B'Qh we can proceed exactly as we did 
for M2 to canonically (with respect to Sk) isotope a homeomorphism /*= 
f(x) to a homeomorphism hx that moves no point in any B0j9 the isotopy 
being small. As explained in §1.4, we can do this if 

(0) Top(S2 X / ; d(S2 X ƒ)) is LCfc for each k. 

Similarly, by taking a suitable ball B'lj9 Bu^B[h we can canonically 
isotope hx via a small isotopy to a homeomorphism h2 leaving each B0j 

and each B1} pointwise fixed if 

(1) TopiS1 x D2; d(Sx x D2)) is LC* for each k. 

(The set 5^—int Bv will be homeomorphic to S1 X Z)2.) 
Then we can canonically isotope h2 via a small isotopy to a homeo

morphism Zz3 leaving each Bij9 / ^ 2 , pointwise fixed since (for suitable 
B2j) B'2j—int ^2i is homeomorphic to a union of disjoint balls. Finally, h3 

is isotopic to 1 via the Alexander trick applied to the B3j. Thus Top(N) is 
LC* for all k. 

The case (1) is proved in much the same way that it was proved in §1.3 
that Top(A ; dA) is LC*. For some a, b e S1, let Ia and Ib denote {a} x D2 

and {ô} x Z>2, then repeat the argument in §1.3. 
To prove the case (0), consider two discs D0czint Dx in *S2. Then 

DQXI and (S2—int D0)xl are balls whose union is S2xl. The set A>= 
(DiXfy-intiDoXl) is homeomorphic to S1xD2, so 7Ö/?(A:; &£) is LC* 
for each &. Thus, we have, for S'{dD1 x / , (S2—D0) x I), the local canonical 
extension property with respect to Sk. The Roberts trick may now be 
applied to prove that Top(S2xI; d(S2XI)) is LC* for all k. 

The arguments outlined in §1.4 now apply to prove that Top(M3; M2)^ 
Top(Mz)-*?0(M

2, M3) is a fibration and that for each k, £(S2, Sz) has the 
extension property with respect to S*. The proof of the local connectivity is 
like Kister's in [37] but the general arguments can also be found in [22]. 
See also [18]. 

Global results are harder to come by. Scott and Akiba ([55] and [2]), 
have announced results from which-it follows that 0(SZ) and Top(Sz) are 
weakly homotopically equivalent and that ^(TopiD2 x S1; d(D2 x *S1)))=0 
for each /, but proofs of these facts have not yet appeared. 
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1.7. Some important recent results. The Edwards-Kirby theorem. 
Friberg [16] has recently given an extremely elegant, purely topological 
proof that 0(S2) is a strong deformation retract of Top(S2). Earlier, 
Morton proved [47], using conformai mapping theorems, that if M is a 
disc with holes, then Top(M; dM) is contractible. It would appear that this 
theorem for arbitrary 2-manifolds and other results may now be amenable 
to Friberg's technique. 

In [9], Cernavskiï proved 

THEOREM 1.7.1. For all compact manifolds N, Top(N) is locally con
tractible. 

The proof, while extremely complicated, is essentially elementary and 
involves the construction, for h e Top(N), of a canonical sequence of 
expanding and shrinking homeomorphisms going from h to 1. All these 
homeomorphisms may be PL. Cernavskifs work is discussed in some 
detail by Rushing in [52]. 

In [7], Morton Brown proved 

THEOREM 1.7.2 (The Schoenflies theorem). If h\Sn^Sn+1 is locally 
flat, then h extends to H\Sn+1±>. The local flatness condition implies, the 
existence of a bicollar. If this collar is canonical, then so is H, This was 
proved in [17] by Gould, who observed that Brown's proof is canonical. (See 
also Huebsch-Morse [33].) 

More precisely, 

THEOREM 1.7.3. If h:Snx [— 1, l]^Sn+1 is an embedding, then 
h\SnxO extends canonically with respect to h to a self homeomorphism of 
Sn+1. 

Note that this does not say that h itself extends nor does it say that 
é(Sn, Sn+1) has any of the canonical extension properties I have been 
discussing. The canonical collar is necessary to the argument. 

In [14], Edwards and Kirby also prove that Top(N) is locally contractible 
for all compact manifolds. Neither proof of this theorem requires a 
triangulation for N, The Edwards-Kirby proof is much in the spirit of 
what I have been discussing, so I shall give it further attention. (See 
Rushing [52].) 

EDWARDS-KIRBY MAIN LEMMA. Consider the space 

«?*(D* X 4Z>, Dk x En; dDk x 4Dn), 

(The asterisk indicates that there is no local flatness condition assumed,) If 
£>0, there is a <5>0 such that ifhed>* and moves no point as much as ô, 
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then there is a canonical isotopy {ht} such that h0=h, ht\d(Dkx4Dn) = 
h\d(Dkx4Dn),h1\D

kxDn~l andht moves no point as much as e. The lemma 
easily reduces to a similar lemma for the subs pace <£** of $* consisting of 
those embeddings that leave C = [ | , \]Dkx2>Dn pointwise fixed. 

The main tool in the proof is the construction of a local canonical 
extension <3>(h):DkxEn-+DkxEn such that 

O(A) | (dDk x En) u (Dk X (En - 3 int Bn)) = 1 

and <S)(h)\DkxDn=h\DkxDn. The map O (of a neighborhood of 1 into 
a neighborhood of 1) can be constructed via Kirby's main diagram 
([36], [52]) in two different ways. One version uses as its main tools an 
immersion of Tn — Dn into 3 int Dn (Tn is the «-torus) and the canonical 
Schoenflies theorem. The other version omits these devices and uses 
instead an expanding and shrinking process à la Cernavskiï. Once O(A) is 
constructed, a version of the Roberts trick proves the lemma. 

In a triangulated manifold N— say, for convenience, without boundary— 
the handles constructed in the standard handlebody decomposition (as 
described in §§1.5 and 1.6 for M2 and M3) are of a form that is amenable to 
the construction of 0(A). Suppose that r i s a triangulation of N and a is 
the barycenter of a ^-simplex of T. One of the fc-handles is H, the star of a 
in the second barycentric subdivision of T. The handle His homeomorphic 
to Dk x Dn~k in such a way that it intersects the union of the y-handles, 
j<k, in a copy of dDkxDn~k. Suppose that h e Top(N)9 is near l̂ y and 
has been canonically isotoped via a small isotopy to hk, which is 1 on all 
y-handles, j<k. Let H' be a copy of Dkx5Dn-k containing / / a s Dkx 
Dn-*k and such that H' meets no other /c-handles and meets the union of 
the/-handles,/<&, in a copy of dDk x 5Dn~k. The construction in the main 
lemma now yields a canonical 0(A), 0(A)=1 on N—H' and (S>(h)=h^1 

on// . Exactly asdescribed in §§1.5 and 1.6 for M2 and A/3, we get an isotopy 
from hk to a homeomorphism leaving H and ally-handles, / < k , pointwise 
fixed. A repetition of this yields the required canonical isotopy from A to 1. 

It must be pointed out that the proof for nontriangulated manifolds is 
considerably more complicated, but it is certainly in the spirit of what I 
have outlined above. Also, Edwards and Kirby have a more general result, 
which they use the main lemma to prove. 

THEOREM 1.7.4. If C is compact and C<=int {/<= U^N, then for any 
homeomorphism h : U->N sufficiently near 1, there is a canonical small isotopy 
{ht} such that h0=h, ht\C=l and for some compact neighborhood VofC, 
eachht\N-V=*l. 

Seebeck and Wright have each used this in modified forms to obtain 
useful results. Seebeck in [56] states his modified form as follows. 
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THEOREM 1.7.5. If M is a closed PL manifold and £>0, there is a <5>0 
such that ifh'.Mx [—|, | ] q M x [ - l , 1] is within ô of I, then there is an 
e-isotopy {gt} such that g0=h, g'1 |MxO=A|MxO and for each t, 
^|Af x{ —*, *}—A|{—*, *}-

He then proves 

THEOREM 1.7.6. For each s there is a à such that if h:MxOc> Mx 
[—1, 1] is locally flat and within ô of 1 and h(MxO)C\(MxO)=0, then 
there is a homeomorphism H:MxI->MxI such that for each x, H(x, 0)= 
x, H(x, l)=h(x) and diam H(xxl)<e. 

He uses this to prove 

THEOREM 1.7.7. If M (of codimension 1) is a closed PL manifold in the 
interior of a PL manifold N, then M has a collar on one side if it can be 
approximated by locally flat embeddings on that side. 

Wright proves in [61] 

THEOREM 1.7.8. Ifn^A, dimM=tt—1 and e>0, then there is a o > 0 
such that ifh:MxOc>MxE1isa local flat embedding within dof\, then h 
extends to H.Mx EX->MX E1 such that H is within eofl. 

He then goes on to prove a complete regularity property. 

THEOREM 1.7.9. Ifn-^A, M~dQn is locally flatly embedded in N and 
admits a PL structure, then S{M, N) has the complete regularity property. 
(Note that ^(S"1"1, Sn) satisfies this property.) 

Thus, using the fact that Top(N; M) is LCfc for each /c, we get, following 
§1.4, 

THEOREM 1.7.10. Under the conditions of Theorem 1.7.9, Top(N; M)c; 
Top(N)-^S,

çs(M, N) is a fibration and S (M, N) has the local canonical 
extension property with respect to Sk. 

There also follows readily 

THEOREM 1.7.11. <f (M, N) is LCkfor each k. 

PROOF, lî f\Sk-*$(M, N) takes Sk into a small neighborhood of 1, 
then the local canonical extension property yields F:Sk->Top(N) taking 
Sk into a small neighborhood of 1. Since Top(N) is LCfc, there is a small 
homotopy from F to 0. Restriction gives the homotopy of/. 

Cernavskiï has also proved many similar and related results. Announce
ments may be found in [10]. 
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CHAPTER II. THE CATEGORY PL 

2.1. Definitions and background. In this chapter, all manifolds are PL 
with a fixed PL structure and the homeomorphisms are those elements of 
Top(N) or «f (M, N) that are also PL. Instead of Top and «f, I use the 
symbols PL and SPL. The symbol Afc denotes the standard ^-simplex and 
In denotes [—1, l]n with a standard PL structure. I use Sn to denote 
dp+i o r d/^n+i^ whichever is more convenient. The elements of PL(M, N) 
are required to be locally unknotted—i.e., for x e int Mand h e êPL{M, N), 
there are PL balls Aah(M) and B^N such that x e int A, Bnh(M)=A9 

and (2?, A) is PL homeomorphic to the Standard ball pair (SA^ 1 , A"-1), 
where 2 denotes suspension. Suitable modifications apply to x e dM. 
There are now several texts in PL topology. See, for instance, Hudson [32]. 

Homotopy can be considered in two different ways. We can consider the 
subspaces TopPL(N) and SrL{M, N) of Top(N) and <f (M, N) consisting 
of the PL homeomorphism. Cernavskiï's proof (see [9]) shows that 
TopPL(N) is locally contractible. 

THEOREM 2.1.1. For h e TopPL{N) and near 1, there is a canonical small 
isotopy H:NxI±> such that each Ht is PL, H0=h and Hx=\. The homeo
morphism H need not be PL. 

In the PL category, the usual setting and the one I shall use is, for 
PL(N), the semisimplicial complex whose &-simplices are level preserving 
PL homeomorphisms/: AkxN±5. The /th boundary operator d{ is defined 
by 9iy

%==/*|(/th face of Ak)xN. The semisimplicial complexes PL(N; M) 
and SPL{M, N) are similarly defined. A semisimplicial map from one 
complex to another takes /:-simplices to A>simplices and commutes with 
each dt. I will not be concerned with technical details here but refer the 
reader to [42] and [51]. 

It is possible in this setting to get a suitable homotopy theory. For the 
present purposes it suffices to note a few pertinent facts. These semi
simplicial complexes have the homotopy type of CW-complexes. Thus 
weak homotopy equivalence is homotopy equivalence and PL(N) may be 
called contractible if all its homotopy groups vanish. An element of 
7Tk(PL(N)) is represented by a PL level preserving homeomorphism 
f./SPxNt) such that / |dA f cxJV=l. The homeomorphisms ƒ and g are 
homotopic if there is a PL level preserving (with respect to A& and / ) 
homeomorphism H:kkxNxI<D such that i/0=/> H^g, and H\dkkx 
NX 1=1. The complex PL(N) is LCfc if for each s, there is a ô such that if 
f:AjxN±>,j^k, represents TTJ(PL(N)) and moves no point as much as ô, 
then there is a PL homeomorphism F:àjxNxI±> such that F1=f9 

F0=l, amoves no point as much as e and F\dkjxNx 1=1. 
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REMARK. In order to compare the categories Top and PL, it will be 
convenient to also consider Top(N) as a semisimplicial complex. Here the 
A>simplices are level preserving homeomorphisms/:AfcxiV±>. 

2.2. The Alexander trick, Hudson-Zeeman theorems and PL(51). 

THEOREM 2.2.1. PL(In; dln) is contractible and locally contractible. 

PROOF. Let / : Ak x In represent 7Tk{PL(In; dln)). Let a be the barycenter 
of Ak and in Akxlnxl, let/? denote (a, 0, 0). Let Tbe a triangulation of 
Ak x In with respect to which ƒ is simplicial and 7\ a triangulation of Ak x 
Inxl that has p * T (the cone of T) as a subdivision. Define F:Akx 
7W x I-+Ak x f x / a s follows. If (x, y, l ) e A f c x f x ƒ, 

*-(*(*, y9 1) + (1 - 0/0 = '(*,ƒ«(», 1) + (1 ~ ')ƒ>> 

roughly, if A= (X9 y, 1), i7 takes the interval from p to a linearly onto the 
interval from p to f (a). Since / | 3 (A f c x/ w )= l , we can extend F by the 
identity to all of Afc x In X / to get the required PL homeomorphism. Thus 
ƒ is homotopic to 0. Clearly, i f /moves no point as much as s9 neither 
does any Ft. 

THEOREM 2.2.2. PLiS1; p) is contractible and locally contractible. 

PROOF. It is clear that PLCS1; p) is isomorphic to PL(F; dl1). 
Something is needed here to take the place of Michael's theorem. It 

comes from the covering isotopy theorems of Hudson and Zeeman 
([30] and [31]). 

THEOREM 2.2.3. Iff: A f c xMq A fcxN is a proper, locally unknotted, 
level preserving PL embedding, then ƒ extends to a PL level preserving 
F:AkxN<D. 

Here, the local unknottedness condition is special and implies that there 
is a PL level preserving collar ƒ* :A f c xMx [—1, \]->AkxN, where 
f*(x9y,0)—f(x9y). For proper / , unknottedness at each level implies 
this if dim iV5^3 and codimension of M= 1. If the codimension of M ^ 3 , 
this follows from Zeeman's unknotting theorem. 

As an elementary application, I indicate how to prove the following 

THEOREM 2.2.4. PL(51) is homo topically equivalent to S1. 

PROOF. We must show that a natural PL map of S1 into PLiS1) is a 
homotopy equivalence. Consider a PL analog of OiS1) obtained as follows, 
with S1=dA2 and A1 identified with ƒ. Parametrize S1 in a PL way by the 
reals mod 1—say by means of a PL map from I to S1 identifying 0 and 1. 
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Let (p\dA2xl±> be a PL level preserving homeomorphism such that 
990=9?! and cptiG)=t. (The <pt are "rotations".) Let OPLiS1) be the semi-
simplicial complex whose &-simplices are PL homeomorphisms ƒ : A& x 
dà2±>, each ft being some cps. It is not hard to prove that in the semi-
simplicial sense, 77i(ÖPL(51))=0if i>\ and w^OPLiS1))^. It remains to 
prove that the injection i: OPLiS1) c+PLiS1) is a homotopy equivalence. 

Let /:Afcx9A2±> represent an element of n^PLiS1)). There is a 
level preserving homeomorphism /* :A f c x0x/c ;A f c xdA 2 x ƒ such that 
ƒ*(x, 0)=f(x, 0), ƒ * (x, 0)=(x, 0) if k>l, and/*(x, 0)==(x, nx) for some 
integer « if k=l. (Recall that A x = / a n d 9 A2 is parametrized by the reals 
modi . ) Then the Hudson-Zeeman theorems apply (M=0, 7V=9A2) to 
yield an extension of/* to F* : Afc x dA2 x 7±> such that F$=fand F*\dAk x 
3A2x 7=1 . If / c>l , F*\dAkx 9A2x 1 represents an element of 7rfc(9A2; 0) 
so is homotopic to 0. Thus the PL product structure can be used, much as 
explained in §1.3 to adjust F* so as to be 1 on A* x 3A2 x 1. If k= 1, observe 
that there are two PL homeomorphisms gu g2:A

1xdA2x 1±>, g1 taking 
is, x, 1) onto (s, yns(x), 1), g2 taking (s, x, 1) to F*(s, x, 1). These agree 
on A1 x 0 x 1. Thus g^gi represents an element of ^(SA 2 ; 0), so is homo-
topic to the constant function 1 : A1 x 9 A2 x l t ) . If we compose each ele
ment of the homotopy with g2 we get that gx is homotopic to g2. Therefore 
the product structure may be used to adjust i7* so that it is gx on A*x 
3A2x 1. Thus ƒ is homotopic to a representative of ir^OPLiS1)). A similar 
argument will prove that if a, /?, represent elements of ir^OPLiS1)) and a 
is homotopic to /? in PLiS1), then a is homotopic to /? in OPLiS1). Thus 
OPLiS1) and PLiS1) are homotopically equivalent. 

2.3. Theorems in dimensions 2 and 3. The PL analog of the complete 
regularity property for PLiM,N), dim ^ = 3 is essentially contained in 
[22]. Craggs ([12] and [13]) also proves this as well as the fact that PLiN) 
is LC°. The arguments used in the category TOP can be repeated in PL to 
prove 

THEOREM 2.3.1. If dim N<:3, then PLiN) is LCk [34]. 

When Michael's theorem is used in TOP, the Hudson-Zeeman theorems 
are used in PL, the fitting together through the product structure being 
done exactly as outlined in §1.3. 

The proofs in [26] for the global results if dim N=2 can also be linear
ized. In particular 

THEOREM 2.3.2. OiS2) is homotopically equivalent to PLiS2). iSee 
Scott [54], Akiba [1] and Morlet [46].) 

The announcements of Scott and Akiba mentioned earlier also state a 
similar result for S3. 
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2.4. Higher dimensional, codimension 1 results. Completely general 
results for higher dimensions cannot be obtained. First, Browder's 
theorem for TOP mentioned earlier holds also for PL—i.e., for some n9 

0(Sn) and PL(Sn) are not homotopically equivalent. Second, the local 
unknottedness condition makes the Hudson-Zeeman theorems difficult to 
apply. Third, the existence of exotic triangulations of Tn, n^.5, shows that 
PL(Tn) is not LC° (Theorem C of Kirby's notes [36]). 

In the positive sense, Siebenmann (as communicated to me by Edwards) 
has recently proved for « ^ 5 and N without boundary that PL(N) is LCfc 

if H2~j(N; Z 2 )=0 for each j^k. This is closely related to the handlebody 
structure of N (see Kirby's notes). The condition is also necessary, so in 
particular, if N is without boundary, PL(N) is not LC2. Also, for any 
codimension, PL(N; M) is LCfc for each k if and only if Hk(N9 M; Z 2 )=0 
for each k<2. This is more often true. 

CHAPTER III. APPROXIMATIONS 

3.1. Approximations in Top(Nz). In [5] and [45], Moise and Bing prove 
that iff e Top(NB) and e>09 there is a n / * e PL(N3) such that d(f ƒ*)<£. 
There is a uniform version of this. In this and the following section, dim JV= 
3, dim M = 2 , and N has a fixed PL structure in which M is a polyhedron. 

THEOREM 3.1.1. Iff:AkxN<D represents an element of 7rk(Top(N))9 

then for each £>0, there is a PL /*:AfcxiV±> such that d(f,f*)<e. 

PROOF. If k=l9 the Moise-Bing results yield, for each x e A1, a PL 
approximation cpx to fx. The product structure may be used to obtain 
points 0 = x 0 < - • -<xn—\ and PL homeomorphisms O^: [x^ xi+1]xN±> 
such that for each /, Ot- approximates ƒ\[xi9 ^ + 1 ]xN, ®iX=<pX{ for 
xi=-x^*i+i a n d ^IO = 1 iv- The fact that PL(N) is LC° may now be used, as 
explained in §1.3, to fit the O^ together at the x4- to obtain the required 
homeomorphism/*. For k> 1, use induction, giving Afc a product structure 
Ak~1xL Use the induction hypothesis to get 0 = x 0 < - • - < x n = l and PL 
<D, : A*-1 x [xi9 xi+1] x NtD approximating ƒ |Afc-! x [xi9 xi+1] x N9 O^A*-1 

X [xi9 xi+1]xN=l, ®ix=(pXi and ® 1 0 =1. These may be fitted together 
as before. 

A modification of this argument proves 

THEOREM 3.1.2. If dim N=39 Top(N) is homotopically equivalent to 
PL(N)—i.e.9 in the semisimplicial sense, i:PL(N)c>Top(N) induces iso
morphisms ofhomotopy groups. 
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PROOF. Since Top(N) is LC& for each k, it follows readily from the 
above that/is homotopic t o / * in Top(N)so that/* :7Tk(PL(N))->7Tk(Top(N)) 
is a surjection. The approximation method can be used to prove that if 
ƒ * : Afc x N±> represents an element of 7Tk(PL(N)) and is homotopic to 0 in 
Top(N), then /* is homotopic to 0 in PL—i.e., we construct a PL approxi
mation to F:AkxNxI±>. Thus i*:7Tk(PL(N))->7Tk(Top(N)) is an iso
morphism. 

3.2. Approximations in <o(M2, NB). Bing proved in [4] that every 
element of S (A/, N) can be approximated by an element of $PL(M, N). 
Suppose that F e Top(N) and f=F\M. Sanderson proved in [53] that if 
ƒ * e êPL{M, N) is a sufficiently close approximation tof then/* extends 
to F* G PL(N), a close approximation to F. See also [12] and [13]. There is 
a uniform version of Sanderson's theorem. 

THEOREM 3.2.1. If F:A*x7V±> represents an element of 7rk(Top(N)) 
andf=F\Ak X M, then for each e>0, there is a ô>0 such that if h represents 
an element ofiîk{êPL{M, N)) andd(f h)<ô9 then there is a representative 
H:AkxNtD ofPL(N) that extends h and is such that d(F, H)<e. 

PROOF. For k=l, the idea of the proof is simple. Apply Sanderson's 
theorem to get a suitable extension over each x x N then use the Hudson-
Zeeman theorems to get 0 = x 0 < - • - < x w = l and Hf^x^ xi+1]xN±> 
extending h\ [x^ xi+1] X M, the intervals [xu xi+1] so short that Ht moves no 
point very much. Since PL(N; M) is LC°, these homeomorphisms can be 
fitted together as in §1.3 and above to obtain the required H. An induction 
argument now works as before. 

There is also a uniform version of Bing's theorem. 

THEOREM 3.2.2. If f:AkxM->AkxN represents an element of 
iTk(S{M, N)) and e>0 , then there is a representative h of an element of 
7Tk(£PL(Ms N)) such that d(f g)<s. 

PROOF. It is convenient to think of Afc as the union of two copies of 
Afc, A ^ u A i A?nAS=Afc-1. The results in Chapter I give F^.A^xN^b 
extending/|A* x M, i ^=1 on dAk x N. Then there are PL homeomorphisms 
Hi:AkxN±> that approximate F€ and restrict to 1 on dAkxN. Usually, 
these cannot be made to agree on Ak-1xN, However, the Hi\A

k-1xM 
do approximate F^A^1 x M, so by the uniform version of Sanderson's 
theorem, Ht\ A*-1 x M extends to a PL Gt : A*-1 x N±> and Gx is close to G2. 
Since PL(N) is LC*-1, there is a PL O.A^xNxIt*, O0=Gl9 01=G2, 
and ^\dAk~1xNxI=l. The product structure may now be used to fit H1 

and H2 together via O. 
All results in this section can be proved for dim N=2. 
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3.3. Higher dimensional approximation theorems. Again, for higher 
dimensions of N but codimension 1 for M, results are difficult to obtain. 
As a positive result, Connell [11] showed that stable and hence all homeo-
morphisms (Kirby [35]) of Sn can be approximated by piecewise linear 
ones. Cantrell and Rushing use Connell's result in [8] to prove that if 

f:Sn~1c^Sn, n^.5, is locally flat, then there is a small ambient isotopy 
taking ƒ to a locally unknotted embedding. 

A negative result is an example described by Edwards in [15]. There is a 
manifold N with two PL structures, and a codimension 1 sub manifold 
M such that <oPL(M, N) is not LC°. Also, if M has two PL structures, Me 

and Afs, the topological embedding 1 IMQXOC^M^XE1 cannot be 
approximated by a PL embedding. 

CONCLUSION. I have completely omitted any discussion of codimensions 
other than 1. For dimension 3, most of the theorems here hold if co-
dimension is 2 or 3, except that an unknottedness condition is frequently 
needed. For higher dimensions, nothing much is known about codimension 
2. In codimension 3, everything seems to be true. Edwards, Miller, 
Bryant-Seebeck, Cernavskii, Rushing, Homma, to name only a few, have 
made valuable contributions. 

Also, there is the general problem of determining the topological prop
erties of these spaces. For instance, Top(M2) is an ANR (Luke-Mason), 
Top(M)xl2 is homeomorphic to Top(M) (Geohegan) and TopPL(M) is 
an ANR. The reader is strongly urged to consult the papers of the authors 
named. 
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